

Knuclear bound state

from **RIKEN Cluster of Pioneering Research Nishina Center**

1

Toward revolutionary Nuclear Study via revealing Internal Structure of Kaonic Nuclei

M. Iwasaki

for the J-PARC E15/E73/T77 collaboration

Outline

- Brief introduction - $\bar{K}NN$, $I_3 = +\frac{1}{2}$ identified in $\bar{K}NN \to \Lambda p$ analysis

- $\bar{K}NN \rightarrow \pi YN$ decay dominance $Br_{\pi Yp} > 10 \times Br_{\Lambda p}$ preliminary analysis ... T. Yamaga - $\bar{K}NNN$, I = 0 identified in $\bar{K}NNN \rightarrow \Lambda d$ analysis

Phys. Lett. B789, 620-625 (2019) Phys. Rev. C102, 044002 (2020)

preliminary analysis ... T. Hashimoto

- Nuclei consist of nucleons bound by nuclear force

nucleons (N):

qqq Fermion:

Pauli exclusion

- Nuclei consist of nucleons bound by nuclear force

nucleons (N): *q* = *u* or *d*

Fermion:

qqq

Pauli exclusion

quark flavor

- Nuclei consist of nucleons bound by nuclear force

nucleons (N): q = u or d

qqq

Fermion:

Pauli exclusion

particles can share a quantum state

meson:

- Nuclei consist of nucleons bound by nuclear force

nucleons (N):	qqq	meson:
q = u or d	Fermion:	E
	Pauli exclusion	particles can s

Yukawa Theorem tells :

- in nuclei, mesons are virtual particle and form nuclear potential

 $\phi \propto \frac{1}{m} \exp\left(-mr\right)$

- Nuclei consist of nucleons bound by nuclear force

nucleons (N):	qqq	meson:
q = u or d	Fermion:	E
	Pauli exclusion	particles can

Yukawa Theorem tells :

- in nuclei, mesons are virtual particle and form nuclear potential - in vacuum, mesons are real particles having own intrinsic masses

Long standing question :

Can meson be a constituent particle forming nuclei?

— Can meson form a quantum state as a particle ? —

- Nuclei consist of nucleons bound by nuclear force

nucleons (N):	qqq	meson:
q = u or d	Fermion:	E
	Pauli exclusion	particles can

Yukawa Theorem tells :

- in nuclei, mesons are virtual particle and form nuclear potential - in vacuum, mesons are real particles having own intrinsic masses

Long standing question :

Can meson be a constituent particle forming nuclei?

— Can meson form a quantum state as a particle ? —

... what we learned ...

K (*qs*) forms a bound state with two nulceons

 \overline{K} meson (K⁻: \overline{u} s, \overline{K}^{0} : \overline{d} s)

- Nuclei consist of nucleons bound by nuclear force

nucleons (N):	qqq	meson:
q = u or d	Fermion:	E
	Pauli exclusion	particles can

Yukawa Theorem tells :

- in nuclei, mesons are virtual particle and form nuclear potential - in vacuum, mesons are real particles having own intrinsic masses

Long standing question :

Can meson be a constituent particle forming nuclei?

— Can meson form a quantum state as a particle ? —

... what we learned ...

K (*qs*) forms a bound state with two nulceons

 \overline{K} meson (K⁻: \overline{u} s, \overline{K}^{0} : \overline{d} s)

totally new pobe (impurity) to study inside nuclei

$\Lambda(1405) = KN \dots$ a "molecule-like hadron composite"

R.H. Dalitz and S.F. Tuan, Ann. Phys., 3, 307 (1960)

supported by kaonic hydrogen data Phys. Rev. Lett., 78, 3067 (1997) supported by Lattice QCD

J.M.M. Hall et al., Phys. Rev. Lett. 114(2015)132002.

why not KNN?

forming a nuclear bound state

what we have done ...

- $\bar{K}NN$, $I_3 = +\frac{1}{2}$ identified in $\bar{K}NN \to \Lambda p$ analysis

Phys. Lett. B789, 620-625 (2019) Phys. Rev. C102, 044002 (2020)

$K^- + {}^{3}He (ppn)$

(K⁻+pp) + n substitute n in ³He by K⁻

$K^- + {}^{3}He (ppn)$

(K⁻+pp) + n substitute n in ³He by K⁻

K⁻ + ³He (ppn)

$K^- + ^{3}He \rightarrow (K^- + pp) + n$: formation

(K⁻+pp) + n substitute n in ³He by K⁻

J-PARC E15: "K-pp" Exploration Research

K⁻ + ³He (ppn)

$K^- + ^{3}He \rightarrow (K^- + pp) + n$: formation

$(K^{-}+pp) + n$ substitute n in ³He by K⁻

strong KN attraction? "K⁻pp" bound state? / compact system?

$K^- + {}^{3}He (ppn)$

$K^- + ^{3}He \rightarrow (K^- + pp) + n$: formation

$(K^{-}+pp) + n$ substitute n in ³He by K⁻

strong KN attraction? "K⁻pp" bound state? / compact system?

If "K⁻pp" exits, a peak will be formed in invariant mass spectrum below M(K⁻pp) $M(K^-pp) \equiv m_{K^-} + 2m_p$

$K^- + {}^{3}He (ppn)$

$(K^{-}+pp) + n$ substitute n in ³He by K⁻

strong KN attraction? "K⁻pp" bound state? / compact system?

- If "K⁻pp" exits, a peak will be formed in invariant mass spectrum below M(K⁻pp) $M(K^-pp) \equiv m_{K^-} + 2m_p$
- $K^- + ^{3}He \rightarrow (K^- + pp) + n$: formation $(K^- + pp) \rightarrow \Lambda + p : decay(M, q)$

$K^- + {}^{3}He (ppn)$

(K⁻+pp) + n substitute n in ³He by K⁻

strong KN attraction? "K⁻pp" bound state? / compact system?

If "K⁻pp" exits, a peak will be formed in invariant mass spectrum below M(K⁻pp) $M(K^-pp) \equiv m_{K^-} + 2m_p$

final state particles $K^- + {}^{3}He \rightarrow (K^- + pp) + n$: formation $(K^- + pp) \rightarrow (\Lambda + p) : decay (M, q)$

select $K^- + {}^{3}He \rightarrow (\Lambda + p) + n$ events, analyze (invariant mass M) of (K⁻ + pp)-system and *momentum transfer* **q** to the system

z-axis is in [nb] per (20MeV/c x 20 MeV/c²)

z-axis is in [nb] per (20MeV/c x 20 MeV/c²)

smeared by Fermi-motion

PWIA based interpretation

what we are working on ... I

Mesonic decay of KNN

observation in non-mesonic channel:

 $BE = 42 \pm 3 \text{ (stat.)} {}^{+3}_{-4} \text{ (syst.) MeV}$ $\Gamma = 100 \pm 7 \text{ (stat.)} {}^{+19}_{-9} \text{ (syst.) MeV}$ $\sigma \cdot Br_{\Lambda p} = 9.3 \pm 0.8 {}^{+1.4}_{-1.0} \mu \text{b}$

Theoretical calculations: $\Gamma \sim 50 \text{ MeV}$

X mesonic decay channel only

 $\Gamma_{\text{mesonic}}^{\text{theor.}} \approx 50 \text{ MeV?} \approx \Gamma_{\Lambda(1405)}$

observation in non-mesonic channel:

 $BE = 42 \pm 3 \text{ (stat.)} {}^{+3}_{-4} \text{ (syst.) MeV}$ $\Gamma = 100 \pm 7 \text{ (stat.)} {}^{+19}_{-9} \text{ (syst.) MeV}$ $\sigma \cdot Br_{\Lambda p} = 9.3 \pm 0.8 {}^{+1.4}_{-1.0} \mu \text{b}$

~ twice wider than theory ~ ~ relatively weak in cross-section~ $\Gamma_{\rm mesonic} \sim \Gamma_{\rm non-mesonic}$? $Br_{\rm mesonic} \sim Br_{\rm non-mesonic}$?

Theoretical calculations: $\Gamma \sim 50 \text{ MeV}$

% mesonic decay channel only

 $\Gamma_{\text{mesonic}}^{\text{theor.}} \approx 50 \text{ MeV?} \approx \Gamma_{\Lambda(1405)}$

observation in non-mesonic channel:

 $BE = 42 \pm 3 \text{ (stat.)} {}^{+3}_{-4} \text{ (syst.) MeV}$ $\Gamma = 100 \pm 7 \text{ (stat.)} {}^{+19}_{-9} \text{ (syst.) MeV}$ $\sigma \cdot Br_{\Lambda p} = 9.3 \pm 0.8 {}^{+1.4}_{-1.0} \mu \text{b}$

~ twice wider than theory ~ ~ relatively weak in cross-section~ $\Gamma_{\rm mesonic} \sim \Gamma_{\rm non-mesonic}$? $Br_{\rm mesonic} \sim Br_{\rm non-mesonic}$?

observation in non-mesonic channel:

 $BE = 42 \pm 3 \text{ (stat.)} {}^{+3}_{-4} \text{ (syst.) MeV}$ $\Gamma = 100 \pm 7 \text{ (stat.)} {}^{+19}_{-9} \text{ (syst.) MeV}$ $\sigma \cdot Br_{\Lambda p} = 9.3 \pm 0.8 {}^{+1.4}_{-1.0} \mu \text{b}$

~ twice wider than theory ~ ~ relatively weak in cross-section~ $\Gamma_{mesonic} \sim \Gamma_{non-mesonic}$? $Br_{mesonic} \sim Br_{non-mesonic}$? mesonic decay brain

13

mesonic decay branch should be measured!

observation in non-mesonic channel:

 $BE = 42 \pm 3$ (stat.) $^{+3}_{-4}$ (syst.) MeV $\Gamma = 100 \pm 7$ (stat.) $^{+19}_{-9}$ (syst.) MeV $\sigma \cdot Br_{\Lambda p} = 9.3 \pm 0.8^{+1.4}_{-1.0} \ \mu b$

~ twice wider than theory ~ ~ relatively weak in cross-section~ $\Gamma_{\text{mesonic}} \sim \Gamma_{\text{mesonic}}?$ $Br_{\text{mesonic}} \sim Br_{\text{non-mesonic}}?$ $\Gamma_{\text{mesonic}} \gg \Gamma_{\text{none-mesonic}}$

13

mesonic decay branch should be measured!

Study on non-mesonic decay mode:

$$I_3 = -1/2$$

$$\pi^- \Lambda p + p_{\text{miss}}$$
Excluded from this talk

$\Lambda(1405)$ + Phase space

$\Lambda(1405)$ + Phase space

 $\Sigma(1385)^+$ + Phase space

No heavier Y^* productions

scattered- \overline{K} is low in momentum

QF- \overline{K} absorption clear for

Similar to $\Lambda p + n_{\text{miss}}$, but

, not significant for

KNN production

Fit result assuming $f_{\bar{K}NN}$ and $f_{QF-\bar{K}}$ are common with what observed in Λp $q_{\pi YN}$ $m_{\pi Y}$ $m_{\pi YN}$ $m_{\pi^-\Sigma^+p}$ $m_{\pi^-\Sigma^+}$ $q_{\pi^-\Sigma^+p}$ $\pi 2 p + n_{mis}$ $m_{\pi^+\Sigma^- p}$ $q_{\pi^+\!\Sigma^-\!p}$ $m_{\pi^+\Sigma^-}$ $\pi^{+}\Sigma^{-}D_{+}n_{mis}$ Counts $\downarrow q_{\pi^+\Lambda n}$ $m_{\pi^+\Lambda n}$ $m_{\pi^+\Lambda}$ unts 50 1/ ပိ $+n_{\rm mis}$ 2.4 2.6 0.5 1.4 0 1.6 1.2 $q_{_{\pi YN}}$ (GeV/c) $m_{\pi YN} \, ({\rm GeV}/c^2)$

Fit result assuming $f_{\bar{K}NN}$ and $f_{QF-\bar{K}}$ are common $m_{\pi YN}$ $q_{\pi YN}$ $m_{\pi Y}$ $m_{\pi^-\Sigma^+p}$ $m_{\pi^-\Sigma^+}$ $q_{\pi^-\Sigma^+p}$ $\pi 2 p + n_{mis}$ with <u>**KNN</u>**, **OF**, and</u> $m_{\pi^+\Sigma^- p}$ $q_{\pi^+\!\Sigma^-\!p}$ $m_{\pi^+\Sigma^-}$ $\pi^+\Sigma^-p_+n_{\rm mis}$ Counts $m_{\pi^+\Lambda n}$ $q_{\pi^+\Lambda n}$ $m_{\pi^+\Lambda}$ unts ටී $+n_{\rm mis}$ 2.4 2.6 0.5 1.4 0 1.6 $q_{_{\pi YN}}$ (GeV/c) $m_{\pi YN} \, ({\rm GeV}/c^2)$

Fit result assuming $f_{\bar{K}NN}$ and $f_{QF-\bar{K}}$ are common with what observed in Λp $m_{\pi YN}$ $m_{\pi Y}$ $|q_{\pi YN}|$ $m_{\pi^-\Sigma^+p}$ $m_{\pi^-\Sigma^+}$ $q_{\pi^-\Sigma^+p}$ $\pi \Sigma p + n_{mis}$ All distributions are well fitted with **KNN**, **QF**, and BG. $m_{\pi^+\Sigma^- p}$ $q_{\pi^+\Sigma^- p}$ $m_{\pi^+\Sigma^-}$ $\pi^{+}\Sigma^{-}D_{+}n_{mis}$ Counts misconceiving of **QF** $q_{\pi^+\Lambda n}$ $m_{\pi^+\Lambda n}$ $m_{\pi^+\Lambda}$ Can only be fitted by assuming 50 stune the presence of **KNN** πn_{mis} 2.6 0.5 2.4 1.4 1.6 1.2 $q_{_{\pi YN}}$ (GeV/c) $m_{\pi YN}$ (GeV/ c^2) $m_{\pi Y} \, (\text{GeV}/c^2)$

Cross section x $Br_{\pi YN}$ from the fit

Cross section of $\bar{K}NN \times Br$.

mesonic decay channel is more difficult to identify KNN signal in invariant mass due to $\rho_{\{\pi Ypn\}}(m,q)$

 Γ_{mesonic} is more than *O*(10) *larger* compared to $\Gamma_{non-mesonic}$

 $\Gamma_{\text{mesonic}} \gg \Gamma_{\text{non-mesonic}}$

what we are working on ... II

Signal of *KNNN*

K⁻+³He → (K⁻+pp) + n (K⁻+pp) → Λ+p

K⁻ + ⁴He → (K⁻ + ppn) + n (K⁻ + ppn) → Λ+d

Preliminary Ad result

Preliminary Ad result

С

- Two disributions are quite similar
- structure below the threshold, QF-K, and broad background

Preliminary Ad result

С

Preliminary result

Summary: - $\bar{K}NN$, $I_3 = +\frac{1}{2}$ identified in $\bar{K}NN \to \Lambda p$ analysis

- $KNN \rightarrow \pi Yp$ decay dominance $Br_{\pi Yp} > 10 \times Br_{\Lambda p}$ preliminary analysis Kabsorption in $I_{\bar{K}N} = 1$ as well

- $\bar{K}NNN$, I = 0 identified in $\bar{K}NNN \rightarrow \Lambda d$ analysis

Phys. Lett. B789, 620-625 (2019) Phys. Rev. C102, 044002 (2020)

preliminary analysis Three nucleon bound state!

K nuclear bound state becomes more solid

Toward *J^P* (spin · parity) study

we welcome you if you can join !!!

Thank you for your attention!

What we measured/observed in E15

Theoretical calculations: $\Gamma \approx 50 \text{ MeV}$ $\approx \Gamma_{\Lambda(1405)}$

X Excluding non-mesonic decay

What we measured/observed in E15

 $(b) \quad 0.3 < q_X \le 0.6 \text{ GeV/c}$

Theoretical calculations: $\Gamma \approx 50 \text{ MeV}$ $\approx \Gamma_{\Lambda(1405)}$

※ Excluding non-mesonic decay

Cylindrical detector system

Cylindrical detector system

In the case of

$$\pi^{-}\Sigma^{+}p + X_{\text{miss}}$$
$$\rightarrow \pi^{-}(\pi^{+}n)p$$

Detected with CDS

Cylindrical detector system

In the case of

$$\pi^{-}\Sigma^{+}p + X_{\text{miss}}$$
$$\rightarrow \pi^{-}(\pi^{+}n)p$$

Detected with CDS

Cylindrical detector system

In the case of

as $(\pi^{-}\Lambda pp) \sum_{n \in \mathbb{N}} psetec A as (\pi^{+}\Lambda nn) \overset{\sim}{\approx}$ $\rightarrow \pi^{-}(\pi^{+}n)p_{.1}$ 1.15 Detected with $GeV[c^2]$ (GeV/c^2)

Cylindrical detector sesten nucleon

In the case of

as $(\pi^{-}\Lambda pp)_{T} = \sum_{n \in \mathbb{N}} \sum_{n \in \mathbb$ $\rightarrow \pi^{-}(\pi^{+}n)p_{.1}$ $\frac{1.15}{(\text{GeV}/c^2)}$ $\frac{m(p_{T})}{M(r)} (GeV(c^2))$

Ad+n event selection

deuteron ID

CDC track curvature & CDH time of flight

w/ vertex consistency cut w/ pipd missing mass cut

- Λ dn final states are identified with a good purity
- ~20% contamination from $\Sigma^0 dn/\Sigma^- dp$

Λ reconstruction

Missing neutron ID

w/ vertex consistency cut w/ lambda mass cut

by considering kinematical & topological consistensies

2核子系 - 反K中間子原子核の JP の決定

 ${}^{\bullet}K^{-}pp^{*} \rightarrow \Lambda + p$

偏向角 φ の定義の説明図

シミュレーション(疑似データ)により 「実測すれば十分な精度で物理量を決定できる」 ことを事前確認

スピンスピン相関により JP 直接確定が可能 J^{p} の違いで ϕ 依存性は大きく異る

荷電対称状態 "Konn"の同定

+ *J*^P決定の補助データ: *J*^Pの違いで "Konn"の収量は大きく異る

荷電対称性の検証も可能

ハドロン質量の起源

構成子クォーク質量は <**qq>**凝縮に依存し 温度・密度の関数

2核子系 - 反K中間子原子核の JP と内部構造

- 通常核 "重水素 d" に K⁰が結合した系 $(1/2)/(1^{-})$ I(NN) = 0, S(NN) = 1 $\left(\uparrow\uparrow, \frac{\uparrow\downarrow + \downarrow\uparrow}{\sqrt{2}}, \downarrow\downarrow\right)$ $\frac{\uparrow\downarrow+\downarrow\uparrow}{\sqrt{2}},\,\downarrow\downarrow\right)$
 - $|I_{\bar{K}N} = 0|^2$ $|I_{\bar{K}N}=1|$
 - ~ 0.75

可能なアイソスピン・スピン対称性 すべてs波のときは J^P = 0⁻, 1⁻ だけ p波励起 J^P = 0+, 1+ の可能性は除外

荷電(アイソスピン)鏡像状態

KNI=0が強い引力 $J^{P} = 0$ の方が強く $\overline{K}NI = 0$ と結合 **"K⁰nn"の収量は JP に大きく依存**

Kaonic nuclei

predicted from

dense nuclei are predicted

Anti-Kaon could be a unique probe for hadron/nuclear physics

RNNN: Theoretical situaion

 $I(J^p) = 0(\frac{1}{2})$

Larger binding than $\bar{K}NN$ and similar width are predicted.

AY: PRC65(2002)044005, PLB535(2002)70. WG: PRC79(2009)014001. BGL: PLB712(2012)132. OHHMH: PRC95(2017)065202.
Acceptance for K⁻⁴He reaction

